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MotionAboutthe Stable LibrationPointsin the
Linearized, Restricted Three-Body Problem

Don Mittleman*

1.0 SUMMARY Jacobi ellipseare obtained. Generic solutions of the
differential equations are given in section 3.2 and

Starting from the well-known differential equa- their dependency on initial conditions is shown in
tions of motion for a point particle in the neighbor- section 3.3.Variouscombinations of the constants of
hood of a triangle libration point (L4 or Ls) in the the system are interrelated; these relationships are
linearized, restricted problem of three bodies in the given in section 3.4.
plane, and after obtaining the finite equations of mo-
tion, three integral invariants of the motion are
derived. The Jacobi integral is expressed linearly in 3.1 The Differential Equations
terms of two of these. The trajectories for varied ini-
tialconditions are drawn; the motion of a point parti- The following discussion parallels closely that
cle, as it moves along its trajectory, can be visualized given in reference 1. Two bodies of finite mass,
in elementary geometric terms. Each trajectory has shown as the Earth (E) and the Moon (M) in the
an exterior bounding curve; its equation is found. An followingsketch,are assumed to rotate about an axis
approximation tOthis boundary curve, awell-defined _1 through their center of mass in circular orbits
ellipse, had been known; the two curves are com- lying in a plane zr that is orthogonal to _1.A rotating
pared graphically. For certain initial conditions, rectangular coordinate system (_],_l) lies in zr; the
there is an interior region from which the trajectory Earth and Moon have the fixed coordinates (Xl,0,0)
is excluded; the equation of the boundary of this and (x2,0,0),respectively,and their center of mass is
region is found, at (0,0,0).The distancebetweenEand Mis chosen to

be equal to 1; the mass of Mis taken as/_ _<0.5, that
of Eas 1 -- tz.The choice for the unit of time is such

2.0 INTRODUCTION that the gravitationalconstant k2 = 1.1

The motion of a particle in the neighborhoodof a
triangular libration point in the linearized,restricted r/
problem of three bodies in the plane is investigated. 1 L
In section 3, the linearized equations of motion are
given; in section 4, three invariants of the motion are
determined; and, in section 5, the trajectories for
several initial conditions are discussed. All trajecto-
ries are bounded; thus, in section 6, the equations for
the exterior bounding curve are derived and, where Mass=ta
appropriate, the equations for the interior boundary E
curves are given. 2/

(Xl,0,0) _Mass=l-_ (x2'0'0) _1

3.0 THE EQUATIONSOF MOTION

In section 3.1,the differentialequations of motion
for a particle are derived. The Jacobiintegral and the JFor the Earth-Moon system, time t* is calculated from this

dimensionless time t using'the equation t* = (Tc/2rr)t, where
7"(is the time for one revolutionof the system about the centerof

*Oberlin College, Oberlin, Ohio. mass. For Tc = 27.322 days, t* = 4.348t.



In the three-dimensional (_:],rll,_l) coordinate equations of motionare
system, the differential equations of motion for a
point particle are

d2_j2 dr/2
2 -_ _2 + (1 - 2bt)r/2 (la)dt2 dt

d2_l dr/l (1 - /.t)(_ 1 - Xl) _(_1 - x2)

dt 2 2----_- = _Jl - r13 r23

d2r/2 d_2 V( 1 _ 2U)_ 2 +9+ 2-_- = 4 r/2 (lb)

d2r/1 2d_l (1 - /1)771 t_n_ dt 2
+ = r/l 3

dt 2 dt r2rl 3

d2_'2
d2_'l _ (1 - gt)_"1 /a_"1 = -_2 (lc)

dt 2 rl 3 r23 dt2

Equation (lc), being independent of equations (la)

where r12= (_:1- Xl)2+ r_12+{12and r22 = (_:1-- and (lb), shows that the motion parallel to the {2
x2)2+ rll2+ {12.If the potential function axis is periodic with period 2zr.No more will be said

about this; the remaining discussionconcentrates on
the solutions of the first two equations.

If equation (la) is multiplied by d_2/dtand equa-
( ) 1 /[_ \) (1 - ta)+ t_ tion (lb)by do21dtandthe results added, the follow-

U _l,r/1,_'l = "2" 12 + r/12 + rl r2 ing is obtained.

is introduced, the equations of motion become
d_j2 d2_j2 dr/2 d2r/2

+

dt dt2 dt dt 2

d2_jl dr/1 3U

2--_--=dt"-"_

3. d_J2+ 3_7__(1 2 .I d_2 drI2_ 9 dr/2
a_z-a7 __ - u_\n2--yi-+ _2-gi-] + -4n2 at

d2rll d_l_ au

+ 2-_ an1dt 2

This equation can be integrated and yields the Jacobi
integral

d2_l aU

dt 2 a_1

111d_2_'_2 :dr/2__2] 3 _22 + ._(l _ 2_0_2rl2
If a (_:2,_2,_2)coordinatesystem is defined with _'k\--_-'] + \--_-] ] = _ _-

the origin at L, a triangular libration point, and with

the axes parallel to the (_1,_1,_1) axes, the linearized + 9 7122-a-T +--c2 (2)

2



where C is a constant to be determined from the ini- where
tial conditions. In particular, three different values
for C are distinguished: --1, 0, and +1. Since equa-

tions (la) and (Xb)are linear in _2and '02and equa- 3(1 '_J )tion (2) is a homogeneous function of _:2,"02,d_2/dt, ¢°12 = "_ - 1 - 3/.t+ 3_t2

andd_21dt'any°thervalue°fCcanbereducedt° 3(1 _ )one of these three by properly scaling the (_2,"02) 6022= _ + 1 - 3/.t+ 3tt2variables.
3.1.1 Rest trajectories.--Those trajectories for

which the initial velocity is zero will be called "rest
trajectories." For these, C = --1 and the initialposi- and the dots indicate differentiation with respect to
tions lie on the conic time.

In this coordinate system, the Jacobi integral is

3 2 3_/_ 9 1
"8_2 + T(1 -- 2/.t)_2r/2 +-'ff 7"/22 ='_" _,2 + ._2 = ¢.O12X2 + _22y2 + C (3C)

If 0 < /x < 1, the discriminant of the quadratic is and the Jacobi ellipse is

I__ )12 2(___) ¢.O12X2 + ¢o22y2 = 1 (3d)
D = (1 - 2/_ - 4 < 0

and the conic is an ellipse which shall be called the 3.2 Solutions of the Differential Equations
Jacobi ellipse.

3.1.2Simplifiedform of the equationsof motion.-- The solutions to equations (3a) and (3b) are of the
To simplifysubsequent discussions,an (x,y) coordi- form
hate system is introduced. The origin is taken at L,
which is also the center of the Jacobi ellipse; the x

x = K 1 cos _,t + K 2 sin _,taxis coincides in direction with the major axis of the
ellipse and the y axis with the minor axis. This is
effectively a rotation of axes with respect to the Y = L1 cosXt + L 2 sin Xt
(_:2,"02.)axes through an angle0, where 0 = 0.5arctan
[--_]3 (1 - 2/z)] radians.

In the (x,y) coordinate system, the linearized Nonzero solutions can be obtained if h satisfies the
equations of motion (equations (la) and (lb)) characteristic equation:
become

_.4 _ X2 + 2_ff.7_(1 -- /1) = O;

x - 2_ = _o12x (3a)
q.

_v"+ 2.;c= co22y (3b) X12 = 1 + x/1 - 227V(1- ta)

;k22 = 1 -- X/1 -- 27/a(1 -- /a)2

X3 =--X 1

;k4 = --X2



Only the stable solutions are considered; i.e., 3.3 Initial Conditions
those for which the X are real and not equal to zero.
Acceptable values of /x are those for which 1 -- The dependency of K 1, K 2, K 3, and K4 on the ini-
27/_(1 -- /x) > 0 or /z <0.0385207 .... For the tial conditions follows. If, attimet=O,x=Xo,Y=
Earth-Moon system, /z ----1/82.45 _ 0.0121285... Yo,_ = Xo, and,_ = 3)0,then
and the linear theory may be used to describe the
motion of a satellite near the libration point.

The solutions to equations (3a) and (3b) are (6912 . %.22)Xo -I- 2y°
among the functions K1 = (5a)

X2 2 -- %.12

x = K 1 cos %.1t + K 2 sin %.1t + K 3 cos %.2t + K 4 sin %.2t

{.o12

where K 1..... L4 are arbitrary constants. If these
trial solutions are to satisfy equations (3a) and (3b), (6012 + %.12)Xo+ 2]'0
the coefficients K 1.... , L4are related.The solutions K 3 - (5c)
to equations (3a) and (3b) can be representedby X22 -- %.12

( 2+ 2%.12yo
x = KlC°S%-lt + K2sin%.lt ) %.2 1

K 4 = - (Sd)
_12 -- %.12%,22

+ (K 3 cos %.2'+ K4 sin %.2t ) (4a)

The determination of K i (i -= 1, 2, 3, 4) is obtained
from equations (4a) and (4b) in a straightforward, if
tedious, calculation.

y = M1(g 2 cos %.1t - g 1 sin %.1t) 3.4 Some Useful Relationships

+ M 2 (K 4 cos %.2t - K 3 sin %.2t) (4b) By direct computation, it can be shown that

where {'°12 + 6022 = 3

%.12 + %.22 = 1

6o12 + %.12
M 1 =

2%.1 {°1{'°2 = %.1%.2

and = 2%.1
M1 6012 + %.12=

2%.1 +{o2 2 %.12
_.o12 + %.22

M 2 =
2%.2 6012 + %.22 2%.2

M2-
2%.2 co22 + %.22



and Since hi (i -- 1, 2) is a root of the characteristic
equation (6), which can be written in the form

co 1
M1M 2 =

co2 _o12 + %2 2%

2X co22 + ]k2

Alternately, if one starts with the equation
the alternate forms for M! and M2 become apparent.
Finally, from

x- 23_= CO12X (3a)

2X1

3; + 2X = C022y (3b) Jlll- 6922 + X12

and seeks a solution of the form 2{co1¢o2"___.
\x2 /

x = K 1 cos Xt + K 2 sin _,t co22 + ;k12

y = L 1 cos ;_t + L 2 sin _kt 2WLCO2

the characteristic equation for X is \c°2/-J

2co1

+ I 2=0 (6) A2_2 [, J
From this, it is inferred that 2co1_k2

or

_1 1

_o2 M 2
)k12 + X2 2 + a)12 + _2 2 = 4

co1

M1M2 = _2
and, since tol2 + _o22= 3, h 2 + h 2 = 1. From

2 1 2
h 1 h22 ----co12to22, it is inferred that hlh 2 _lm2, dis-
regarding the negative value for the square root.



4.0 INVARIANTSOF THE MOTION Usingr to represent timefor the "second" particle
(so that at q, r = 0), its equationsof motion are

In section4.1, two invariants of the motion, J1and

•12,are derived. A third invariant relationship is given x(r) * *in section 4.2, where it is also shown that these three = K 1cos Xlr + K2 sin Xlr
invariants can be used to distinguish between
different trajectoriesor to identify a "second" trajec- + K3 cos X2r + K4 sinX2r (8a)
tory as a continuation of an earlier identified one. A
linear relatior_exists between J12,J22and the Jacobi

constant; this is derived in section 4.3. y(r) = M 1 (g 2 cos _kl'r - K1 sin _klT")

4.1 TheJ 1 and J2 Invariants + M2(K _ cos _k2"r - K_ sinX2r) (8b)

Suppose a particle P is observed at t =t o at posi-
tion (Xo,Yo)with velocity (2o,Po).Its trajectory can be The relation between rand r is t = r + t].
determined. At some later time th the particle Pwill Equations (7a) and (7b) for the original trajectory
be at the point [X(tl,)y(q)] = (xl,Yl) with velocity [x(t),y(t)] when viewed in the time frame r become
[2(tl)O_(tl)]= (21,)1).However, between t = toand

t = tl, you lose track of the particle. Is it possible to x'(r+ t 1)= K 1 cos Xl (7"+ t l)+ K2sin Xl (r+ t I)decide if the particle Pobserved at time t = t0and the
particleobserved at t = ti are the same? The follow-
ing discussion partly answers this question. + K3c°s_'2( r+ tl) + K4 sin_2( r+ _1)

Having observed the particle initially at (Xo,Yo) (9a)
with "initial" velocity (2o,Po),a unique trajectory
and, in particular, the numbers K1, K2, K3, and K4
are determined. At the later time tl, a particle is ob- y(r+ tl)= MIIK 2 cosXl(r + tl) - Kl sin Xl(r+ tl)_
served at the point (x],yl) with velocity (2],Pl)..For
these "initial" conditions, a unique trajectory and, in + M 2 _k"4 cos X2 (r+ t l) - K 3 sin X2(r + tI)]
particular, four numbers KI*,K2*,K3*,and K4*are
determined. The question may then be framed: Is (9b)
this second trajectory merely a continuation of the
first or is a different particle being observed? ' Using the addition formulas forsin h(r + tl) and cos

Using t to represent time for the "first" particle h(r 4- tl) in equations (9a) and (9.b)and equatingthe
(so that at to,t = 0), its equations of motion are coefficients of cos hlr, sin hlr , cos h2r, and sin h2r

to the corresponding quantities in equations (8a) and
(8b),2it is found that

x(t) = K 1cosXlt + K2 sinXlt

+ K 3 cos X2t + K4 sin X2t (7a) K_ = K 1 cos Xlt 1 + K 2 sin Xlt 1 (10a)

K_ = K 2 cos Xlt 1 - K 1 sin Xlt 1 (10b)

y(t) = MI(K 2 cosXlt- K 1 sit! Xl0
K3 = K 3cosx2t 1 + K 4sinx2t 1 (10c)

+ _12(K4 cos _k2t - g 3 sin _.2t) (7b)
• = K4 cos X2t1 - K 3 sin X2t 1 (10d)K4

2A sufficient condition to permit the equating of the corre-
sponding coefficients is that h1and h2be incommensurate. This is
assumed here and throughout the remainder of this paper.



However, equation (10) implies that followingrelations:

*2 2 2 K 1 K 2

K_ 2 + K 2 = K 1 + K 2 (lla) c°s41 =-'_--1 sin41 ="_'1

and cos4_ K_ • K_= _ sin41 -

K_ 2 + K_ 2 = K32 + K42 (|lb) K3 K4

Therefore,K12+ K22and K32+ K42are invariants of , ,
K3 , K4

thetrajectory.=K32+ K42shallThen°tati°nsJ12beused. = K12+ K22and J22 cos4_ = 72 sin42 =

4.2 The Third Invariant
(Remember that Jl*----Jl and -/2"----J2. Also, only _b_

It has been shown that the quantitiesJ1and J2are and4_ arefunctionsof tl.) Using this notation,
invariantsof the trajectory. The question of addi-
tional invariantsis pursued.

From equations (10a)to (10d), it is found that cos(Xlt 1) = cos41 cos41 + sin41 sin41

K1K_ + K2K_ = cos(41 - 4_)

cos _,ltl - 2

Jx sin (_k I t 1 ) = Sill 41 COS4_ -- COS41 Sin 4_

sin Xlt 1 - J12

K3K_ + K4K_ Therefore, there exists an integer n such that
cos _2tl = 2J2

_klt 1 = 41 -- 4_ + 2n/r (12a)

K4K _ - K3K _

sin 2_2tl = 322 It is claimed that n is zero. Consider

2rrn = Xlt 1 -- 41 + q_ (12b)
(Note that, on the right sidesof these equations, only
KI*,K2*,K3*,and K4*depend on tl; the other symbols
do not.)

Four angles _bl,_bl,_b2,and _b2 are defined by the The symbol _bl,which depends on the "initial" con-
ditions at to,is independent of t1and for our purpose
is constant. The symbol _b_depends on the "initial"



conditions at tl; €_ is a continuous function of t1. Yo = M1K2 + M2K4 (14c)
Furthermore, if t1 ---0, €_ = €1. Therefore, the right
side of equation (12b) is zero for t1 = 0. Thus,
n ----0 when tt -- 0. But n is an integer and the right -Vo= -X1M1K1 - X2M2K3 (14d)
side of equation (12b) is a continuous function of t1.
This implies that n --_--0 and equation (12a) becomes

When these valuesare substituted into equation (3c),
that equation becomes

Xlt I = _b1 -- ¢_' (12c)

A similar argument shows that (_'12 - c°22M12)K22+ (Xt2Mt2 - c°12)Kt 2

+ (_k22- t-o223/22)K42 + (X22-_122 - co12)K32
X2tl = ¢2 -- ¢_ (12d)

+ 2(_,l_k 2 --co22MXfl12)g2K 4
Eliminating tl,

+ 2(X1X2M1M 2 -co12)K1K 3

_-2¢i -- _,i_2 = _.2¢_ -- _i¢_ (13)
= -C (15)

The symbol used shallbe J3-- h2q_l -- h1¢2.

Equations (11) and (13) show that if the same tra- However, since M1M2 -- tOl/CO2 and hlh 2 = tOlr.O2,
jectory is observed at two different times, the quan- the coefficientsof K2K4 and K1K3are zero.
tities J1,J2,and J3are invariants. Conversely, if two The coefficients of Kt2 and K22are shown to be
trajectories are given for which the J1,J2,and J3of equal by the following.From section 3.4,
the first are equal, respectively, to the Ji*,J2*,and J3*of
the second, then the two trajectories are notdistinct;
one is a continuation at some later time of the other.

co12 + _kl2 2X 1
Furthermore, this later time can be determined from M1 = =
either equation (12c) or equation (12d). 2X1 co22 + X12

4.3 On the Relation Between J1, ,/2, and C, the so that
Jacobl Constant

The Jacobi integral, equation (3c), is valid for all 2 _ ¢a'312 + _12
values of the time t and in particular for t -- 0. The M 1
following relationships between Xo,Yo,20, and .Voand 0922 -I- )k12

K l, K2, K3, and K4can be found from equations (4a)

and (4b) and their derivatives with respect to time. co22M12 + _12M12 = 6o12 + _k12

xo = K 1 + K3 (14a) X12M12 _- _12 = _k12 co22M12

Xo = X1K2 + _'2K4 (14b) A similar calculation shows that the coefficients of



K32 and K42 are equal. Thus, equation (15) can be Typical trajectories are drawn for 3' = 0°, 15°,
written as 30°, .... 345° in figure 1. The value of/x -- 1/82.45

was chosen, from which h 1, h2, to1, to2, M1, and M2
were calculated.

L,, L,, For the specific initial conditions, K 1, K 2, K3, K4,
k-22Ma2 - X12/J12 + \-223122 - X22/J22= C and J1,J2werealsocalculated.Eachgraphis scaled

(16) so that each mark represents 5 units. The innermost
curve (in black) is the Jacobi ellipse; its semi-major
axis equals l/to 1and its semi-minor axis equals l/to 2.

5.0 ILLUSTRATED TRAJECTORIES The trajectory is drawn in red for 0 _< t <_ 50.3 The
blue curve will be discussed in section 6.

Trajectories associated with different initial condi-
tions are explored, in a systematic way, in this sec-
tion. At a first level of classification, trajectories were 5.2 Trajectories for Which C -- +1
differentiated on the basis of the value of the Jacobi

constant C. In sections 5.1, 5.2, and 5.3, trajectories Among the trajectories for which C = +1 are
for which C-- -1, C = +1, and C-- 0, respectively, those which start, with velocity different from zero,
are examined, at the libration point x -- 0, y -- 0. Under these con-

ditions, the Jacobi integral becomes

5.1 Trajectories for Which C - --1
._o2 + .yo 2= I

Included among the trajectories for which C ----
-- 1 are the rest trajectories, those for which the start-
ing position is on the Jacobi ellipse. These trajectories constitute a one-parameter family

of solutions that can be parameterized by 2o = cos y
and .Vo----sin y, where 3' is the parameter. The values

CO12Xo2 + _22yo 2 = 1 of Ki are

These constitute a one-parameter family of solutions 2 sin 7

that can be parameterized by Xo = (l/to 1) cos y and K1 - ( )
Yo = (l/to2) sin y, where 3' is the parameter. The ._'2 2 -- X12/

values of K i are

_.1 (COl2+ _,22)cos 'Y
K2 =

(_12 + _k22) cos')' _o12(_.22 -- X121

K1 = Wl(X22 - X12) 2sin7
K 3 -

2X2 sin"/" (X22- Xl 2)

K2 = co1(X22 - X12 ) X2(w12 + X12) cos'y
K4 =

K3 = (_12 + X12) cOs'Y _12(X22 - Xl 2)-
2),1 sin 7 Typical trajectories are drawn for 3' = 0°, 45°, 90°,

K4 = _ ( 135°, 180°, 225°, 270°, and 315° in figure 2.
\X22 -- _'12) 3This corresponds to approximately 217.422 days.

(..oI



5.3 TrajectoriesforWhichC - 0 a -- 1,mostof thetrajectorieslaywithin thebounds
of the size of the paper available (figs.3(a) to 3(h)).

The third possiblevalue for Cis zero.Under these For those trajectories that exceeded these bounds,
conditions, the Jacobi integral becomes the drawings were rescaled by choosing o_--- 0.5;

these trajectories are given in green (figs. 3(i) to
3(n)).

:XO2 + ))O2 = CO12xo 2 + _22yo2

6.0 ENVELOPES

The trajectories to be used as models will be those For the trajectories drawn, there is an exterior
that start on the ellipse bounding curve for each. In section 6.1, a geometric

description is given that enables determination of
this bounding curve. The equation for the bounding

_12Xo2 + _22yo 2 = _2 curve, found as an envelope, is given in section 6.2.In section 6.3, orbits of spaceship observatories are
described. An approximation to the bounding curve
had been known; in section 6.4, this approximation

with the proper initial velocity dictated by the equa- is compared to the envelope determined in section
tion 6.2. From the analysis given in section 6.2, an inner

region from which the trajectory may be excluded
can be determined; this is done in section 6.5. It was

_o2 + _o2 = a2 observed that, for all the trajectoriesdrawn, "/2_>Jl.The question thus arises: Is this always true or are
there initial conditions for which J1 > J2? This is
answered affirmatively in section 6.6and trajectories

These conditions may be parameterized by Xo -- for a select set of initial conditions are drawn.
(or/tel) COSB, Yo = (or/to2) sin/3, 2o= a cosy, and Yo
= _ sin 3'.The values of Ki are

6.1 A GeometricDescription

aF[€"12+l_k- X22"_]cos/3+ 26o1 sin '.1x_ Consider a ray emanating from the libration pointand the intersections of the trajectory with it. If the
K 1

_1(_.22,,-- XI2) ray is referenced by an angle 0, let r(O)be the least 1
upper bound of all the intersections. Then, r ----r(0) is

a_kl _X22 sin fl - (6O12+ X22)6O2COS7_ the bounding curve for the trajectory.
K2 ..... On a fixed ray r, the distances from the libration

6o126o2 _k22_ Xl2 point x ----y ----0 tOsuccessiveintersections with the
trajectory seem randomly generated. To proceed

[(6o ) "r] directlyfrom this sequence of distances to their leasta 12 + X12 cos/3 + 26oI sin upper bound seems hopeless; an alternate descrip-

K3 - 6o1\(_k22 - X12/_ tion is needed.Consider a particle P moving according to equa-

_(6o 7 tions (4a) and (4b) where the K i are given by equa-

°l_'2 12 + X12)6o2 cos ")' -- 2X12 sin _ tions (5a) to (5d) for the initial conditions (Xo,Yo),

K4 - -_ (Xo,.re)-At t ----0, when P is launched, a spaceship S 16o126o2 X22 -- X12 is also launched. In describing the motion of S1,

whose equations of motion will also be equations
(4a) and (4b), K1, K_, K3, and K,_shall be used to

Typical trajectories are shown in figure 3 for fl,y ---- denote the coefficients. The initial conditions for S1
0°, 45°, 90°, 135°, 180°, 225°, 270°, and 315°. With will be represented by (Xo*,yg), (:_o,Y*).The space-

10



ship S1is launchedso that As viewedby an observer on Sl, the particle P de-
scribes the ellipseE3

3), - (c°12 + 2`12)x2 x = K3cosX2t + K4sin2`2t

o 2 = J2 c°s(2`2t - 42)

and Y = M2(K4 cos 2`2t - K3 sin X2t )

= M2J2 sin(2`2t - 42)

* = (¢012 + X12) "*Xo
Yo

22,12 The semi-majorand semi-minor axes for El are J1
and M1J1,respectively; for E3,they are J2and M2J2,
respectively. An observer fixed in the (x,y) system
and looking at S1 and P can visualize the ellipse E3

i.e., the initial conditions for spaceshipSl are chosen being attached to S1and moving with it. The center
so as to make K3*----K2= 0. of E3 is at S1 and the axes are parallel to the axes of

Under these conditions, the trajectory of the El, as shown in the followingsketch.
spaceshipS1is givenby

The ellipse E 3 rides on the ellipse E 1
X* * *= K 1 cos Xlt + K 2 sin Xlt

• )y* = M 1 cos Xlt - K 1 sin Xlt
E 3

where K_ = * * "* * "* ......._. __ __ J _ pT .--J2

xo and K2 = Xo/hl. If Xo and Xoare
chosen as )Co= K1 and Xo = hlK2, then KI*= K1 E l
and K2*--=K2.Thus, for appropriatelychosen initial
conditions, the trajectory of spaceship S1 is the _J1] x
ellipseE1

x = K lcosxlt + K2sinXlt

= J1 cos (2`1t -- 41) Again,consider the particle Pmoving accordingto
equations (4a) and (4b) where the K i are given by

y* = 31I(K2 cos),l t - K 1 sin2`1t) equations (5a) to (5d) for initial conditions (Xo,Yo),
(2dried).At t = 0, when Pis launched, a second space-
ship S2is also launched. In describingthe motion of

= M1J 1 sin (2`lt - 41) S2,whoseequationsof motionshall alsobe equations
(4a) and (4b),/_1", K_2*,K_3*,and/_4" shall be used
to denote the coefficients.The initial conditions for
S2 will be represented by (_*, _*), (_o*,));*). The

11



spaceshipS2is launchedso that Pdescribes the ellipseE4

co . 2_ ** x = K 1 cos Xlt + K 2 sin X1t•** _ 12 + ^2 ]Xo
Yo 2

= J1 C°S (Tklt - _bl)

and ._ = MI(K 2 cos Xlt - K 1 sin Xlt )

= M1J 1 sin (;kit - _bl)

** (C°12 + X22) xo**
Yo =

2X22
The semi-major and semi-minor axes for E2 are J2
and M2J2, respectively;for E4, they are J1and M1J1,
respectively. The geometry for this situation is il-

i.e., the initial conditions for spaceship S2are chosen lustrated in the followingsketch.
so as to make/_* = /¢_2"= 0. The trajectory for
spaceship S2 isgiven by the equations

TheellipseE4 rideson the ellipseE2

X** ** **= K 3 cos X2t + K 4 sin X2t y

**y** = M2(K_* cos _.2 t -- g 3 sin X2t ) ]I[l rl

where/_,* = _* and/O_,*= _*lh 2. If _* and 2o* E2 _ 23 4
are chosen as X_o*----K3and _o*----h2K4, then K_3*---- J1
K3 and K_4*= K4. Thus, for appropriately chosen _ x
initial conditions, the trajectoryof spaceshipS2is the
ellipseE2

x** = K3 cos X2t + K4 sin ;k2t

= J2 cos (X2t -- 02) In the subsequent discussions, the description will
be based on the imageof the ellipsewith the smaller

y** = M2(K 4 cos X2t - K 3 sin X2t) semi-major axis riding on that spaceship whose tra-
jectory has the larger semi-major axis. In effect, Jt
and J2are being compared, since M1 _ 0.49 ... and

= M2J2 sin(_,2t - 02) M2_ 0.19... for tz = 1/82.45.

and, when viewedby an observer on $2, the particle

12



6.2 The Equation of the Envelope When these two values ofyare substituted into equa-
tion (18), two values of x are determined.

When a fixed ray emanating from the origin inter-
sects the smaller ellipse as it is being carried pig-
gyback on the larger ellipse, the farthest point of in- M1J2 cos c_

tersection is an upper bound for all intersections of x# = J1 cos a + ,l_ 2cos2a (19b)M22sin2a
+

that ray and the trajectory. This farthest point of in- _1,11
tersection can be found quantitatively.

Assume that Jl > J2-The equation of the ellipse
which the spaceship S1traverses is x = J1cos a and It is important to remember that the plus signs go
y = M1J1sin a, where a, the eccentric angle, is con- together as do the minus signs. Equations (19a) and
sidered a parameter. 4 The equation of the smaller (19b) are the parametric equations for the envelope.
ellipse on whose perimeter the particle rides is Using the plus signs, the bounding curve is drawn in

blue in figures 1 to 3.

The analysis for J2 >_ J1 parallels that given above

(x - J1 cos a) 2 (y - MIJ 1 sin a_2 and leads to the equations 5
t = 1 (17)

jr22 M2 2J2 2
M2J1 cos a

x# = J2c°sa +
_/M22cos2a + M12sin2_

If the envelope of this one-parameter family of

ellipses is determined, a bound for the trajectory will M12J1 sin c_
be found. To find the envelope, first differentiate y# = M2J2 sin a +
equation (17) with respect to a. This produces _M22cos2a + M12sin2a

MtJ l

J'x - J,ooso -  1j, =0J22\ 6.3 The Orbit of the Spaceship

Each spaceship, because of the special way the ini-
which can be simplified to tial conditions were chosen (i.e., for SI, "/2----0; for

$2, J1 --- 0), has a periodic orbit, an ellipse. These
elliptic orbits are described in reference 2 (pp.

_fl 258-261).
(x - Jl cos a)sin a _(y - M1J 1 sin a)cosa = 0

M 2

(18) 6.4 An Approximation to the Envelope

An approximationto the envelopedevelopedin
It remains to solve equations (17) and (18) for x and section 6.2 can be obtained by arbitrarily assuming
y. Solve equation (18) for (x - J1 cos a) and the envelope to be an ellipse with semi-major axis
substitute this into equation (17). The resulting equa- J1 -t- J2 and semi-minor axis M1J1-t-M2J2 (ref. 2, p.
tion can be solved for y, there are two solutions: 283). A comparison of this approximate bound and

the bound found in section 6.2 is shown in figure 4.
The bounding curve is drawn in blue and the ellipse

M22J2 sin a in red. At the scale in which the figures are drawn,
_ (19a) the approximation is remarkable.

y# = M1J1 sin a + _/tM12c°s2a !l122sin2a
+

4Notethat a = hit -- q_1" 5Notethat, in thiscase, a = h2t -- qb2.
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6.5 An Inner Bounding Curve gular regions, AO1D and BO3C, are notpart of the ex-
cluded region; the excluded region is bounded by

In section 6.2, an outer bounding curve was oh- 01020304. A typical situation is shown in figure 5.
tained when the plus sign was used in equations In figure 6, the family of smaller ellipses is drawn in
(19a) and (19b). From the geometry of a family of black, the trajectory in green, and the bounding
ellipses whose centers lie on a fixed ellipse, one curves in red.
suspects that, under the right conditions, there may For C = +1, there may be no inner excluded
be an inner region from which the trajectory is ex- region, as can be seen in figure 7. The inner envelope
cluded. The existence of such an inner region de- in this illustration, drawn in green, does not encom-
pends on the relative magnitude of J1 and "/2and the pass a region from which the trajectory is excluded.
relative magnitude of M1J1and M2J2. In the next section, initial conditions are given for

The case of C = 0 is disposed of easily. From which there does exist an inner region from which
equation (16), it is found that the trajectory is excluded.

For C = -1, there will always be an inner ex-
cluded region that includes the Jacobi ellipse.

/_2 2 -- _22M2_

j12=j L ___2-%142
_co22M 1 - X1_/ 6.6 On the Relative Magnitude of./1 and "/2

Equation (16) can be rewritten as

and for/z ----1/82.45,

2M2
j12 = \ 2 2 - 2 Ij 2 + C__

(_,12- o022M12) 2 (_,12 - oo22M12)J1 = 0.3515,131989732791 J2

and
For/x -----1/82.45,

(M1J 1) = 0.8878271396217024(M2J2)
J12 = (0.1235615290524281)J22+ (5.182189180103332)C

In this case (refer to the sketch on page 12), there

is always an inner region from which the trajectory is For all the figures drawn thus far, J1 _ J2; are there
excluded. Equations (19a) and (19b), when the initialconditions for which J1 > J2? If C-- 0,
minus sign is used, produce a curve that looks like
the one shown in the following sketch.

J1 = (0"3515131989732791)J2

Y and clearly J1 < "/2.Similarly, if C --- - 1,
C D

•----_ x
J1 < (0-3515131989732791)J2

B 0 4 A

Thus, if any trajectories are to be found for which

J1 > J2, they can only be among those for which
For the parameter a (t_ going from 0 to 2rr), C---+1.
the sequence to be followed in tracing the curve is It is not intended to exhibit samples of all trajecto-
QAOIO203BCO30401DQ. However, the two trian- ries for which J1 > "/2,only some of a special set. If J1

14



> J2, then J12> ./22and K12+ K22 > K32+ K42. This implies that
Usingthe parametric representation of equation (22)
in the appendix,

4(01
tanh/3 > -

2(012 + X12 + X22
((.o124 ?`22)coshasinhi5 + 2w 1 coshacosh/3sin7

K1 = co1(?`22 - ?`12 )

or that/3 > --0.7343384813667741.

K3= (%2+ ?`12)c°sh°tsinh0+ 2c°1c°sh_c°shlJsinv%(X22_ ?,12) [(_I 2 + X22)sinh/3+ 2(01cosh_] >

2 X12)cosh_xcosh13cos.r_ 2XlZsinha] [((012+ Xl2)sinhl_ + 2(01 coshl_]

This implies that

Specialvalues are chosen for a and y; ct = 0, y =
9O°. For these values,

d

(X22 - Xl2)sinh.13> 0

K1 = (CO\l2 + ?t22/sinhfl__ + 2(01cosh/3 or, since (k22 -- k12)< 0, that sinh/3 < 0. However,
(01(_'22 -- 2k12) sinh 13< 0 for/3 < 0. Therefore, we find that Jl > J2

for _ ---0, -0.73 </3 < 0, 3' -- 90°. Trajectories for

K2 = 0 /3 ------0.1 through -0.7 are given in figure 8. The
shape of the interior excluded region in figure 8, as
shown in the followingsketch, is similar to that of

((012 + Xl2)sinh/3 + 2(01 coshj3 the sketch shown in section 6.5 rotated 90°.
K3

COl(;k22 -- _kl2 )

K4 =0

Thus, Jl > J2 impliesthat[K 1[ > Ig31.

Case 1

[(0"_ 2+I _'22)sinh_ + 2Wl cosh_] >

-[((o12 + Xl2)sinh_ + 2_ 1 cosh,]

15



7.0 CONCLUDINGREMARKS curve and the ellipsewere compared graphically;the
agreementseems remarkable. For certain initial con-

The derivation of the finite equations of motion ditions, there is an interior region from which the
from the differential equations that describe the mo- trajectory is excluded; the equation of the boundary
tion of a point particle in the neighborhood of a of this region was found.

triangular libration point (L4 or L5) in the linearized, Lyndon B. Johnson Space Center
restricted problem of three bodies is well known. National Aeronautics and Space Administration
From these equations, three integral invariants of the Houston, Texas, September 28, 1979
motion were derived;the Jacobi integral is expressed 953-36-00-00-72
linearly in terms of two of these.

The trajectories for varied initial conditions were
drawn. The motion of a point particle as it traversed 8.0 REFERENCES
its trajectory was described in elementary geometric
terms. 1. Moulton, F. R.: An Introduction to Celestial Mechanics. The

Each trajectory has an exterior boundary curve; MacMillan Co. (New York), 1939, pp. 277-281 and 298-307.

its equation was found. An approximation to this 2. Szebehely,Victor: Theoryof Orbits. Academic Press (Ne'w
boundary curve had been known; it is a well-defined York_, 1967.

ellipse. For different initial conditions, the boundary
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Appendix
Parameterizationsfor the Jacobi Ellipse

A convenient method for choosing the initial For trajectories that start at the libration point (Xo=
values of the position and velocity of the particle can Yo= 0), a = fl -----0, ,/arbitrary. If the initialposition
be obtained from the Jacobi integral: is different from the origin, a and/3 can be deter-

mined from equations (22a) and (22b) and y from
equations (22c) and (22d).

-_o2 + 3)02 -- COl2Xo 2 -- co22yo2 = C (20) If C = O,equation (20) can be parameterized by

1
If C = - 1, equation (20) can be parameterizedby Xo = -- a cos/3 (23a)

co1

1

xo = _ cosha cosh/3cos3' (21a) Yo = co---2a sin/3 (23b)
co1

1 "_o= a cos3' (23c)
Yo = m cosha cosh/3sin3' (21b)

co2

-_o = a cos 7 (23d)

Xo = cosha sinh/3 (21c)

3)o = sinha (21d) Included among these trajectories is the solution cor-
responding to a = 0; i.e., the particle is at the libra°
tion point with zeroinitialvelocity and remains there

For the rest trajectories (sec. 5.1), a =/3 ---0, 3'ar- indefinitely. Leaving this solution aside, the
bitrary. If the initialvelocity is not zero, a and/3 can parameterization is as given above.
be determined from equations (21c)and (21d) and y
from equations (21a) and (21b).

If C = +1, equation (20) can be parameterized by

1
x o = m cosh a sinh/3 (22a)

co1

Yo = _ sinha (22b)
_2

"_o = cosh a cosh/3 cos 3' (22c)

3)o = cosh a cosh/3sin 3' (22d)
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(a) a - 0, ft - 0, y - 0'. 

FIGURE 1.-Typical trajectories for which C = -1. 



(b) a = 0, p = 0, y = ISe. 

FIGURE 1.4ontinued. 



(c) Q 0, 8 0, Y = No. 

FIGURE 1.4ontinued. 



FIGURE 1.Ã‘Continued 



(e) CY = 0, j3 = 0, y = 60'. 

FIGURE l.-Continued. 



(0 a = 0, - 0, y = 75'. 

FIGURE 1.--Continued. 



(g) a - 0, /3 = 0, y 90'. 

FIGURE 1.--Continued. 



(h) a = 0, 0, y - 105'. 

FIGURE I.-Continued. 



FIGURE L-Continued. 



FIGURE 1 .-Continued. 



FIGURE 1.--Continued. 



(1) a = 0, f l  = 0, y = 165.. 

FIGURE 1.--Continued. 



(m) a = 0, p = 0, y 180". 

FIGURE 1.--Continued. 



(n) a 0, B = 0, y = 195.. 

FIGURE 1 .--Continued. 



FIGURE 1.--Continued. 



(P) a = 0, B - 0, y - 225'. 

FIGURE 1.--Continued. 



FIGURE l.-Continued. 



(r) a = 0, /3 = 0, y = 255'. 

FIGURE 1.--Continued. 



( 8 )  a = 0, f3 = 0, y = 270'. 

FIGURE 1.--Continued. 



FIGURE 1.--Continued. 



d. 

I 

i 

(u) a = 0 , p  = 0, y = 300'. 

FIGURE l.-Continued. 



(v) a = 0, /3 = 0, y - 315'. 

FIGURE 1.--Continued. 



(w) a = 0, /3 = 0, y = 330.. 

FIGURE 1.--Continued. 



FIGURE 1.4oncluded. 



(a) a a 0, /3 = 0, y = 0'. 

FIGURE 2.-Typical trajectories for which C -- +l. 



(b) a = 0, B = 0, y 45'. 

FIGURE 2.4ontinued. 



(c) a - 0, @ = 0, y = 90.. 

FIGURE 2.--Continued. 
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(dl a - 0, /3 = 0, y - 135.. 

FIGURE 2.--Continued. 



(e) a = 0, B = 0, y = 180'. 

FIGURE 2.4ontinued. 



FIGURE 2.--Continued. 



(g) a - 0, /3 - 0, y = 270.. 

FIGURE 2.4ontinued. 



(h) a = 0, = 0, y = 315.. 

FIGURE 2.4oncluded. 



(al) a - 1, i3 = 0*, y = 0'. 

FIGURE 3.-Typical trajectories for which C = 0. 



(a21 a = 1, p = 0'. y = 45'. 

FIGURE 3.4ontinued. 



(a31 a = 1, /3 = 0°, y = 90'. 

FIGURE 3.--Continued. 



(84) a = 1. B = O', y = 135.. 

FIGURE 3.4ontinued. 



FIGURE 3.4ontinued. 



(16) a = 1, p = Oo, y = 22S0. 

FIGURE 3.--Continued. 



- 

- - 

- 
(a7) a = 1, B = 0', y 270'. 

FIGURE 3.4ontinued. 



(a81 a - 1, /3 - O', y = 315'. 

FIGURE 3.--Continued. 



(bl) a = 1, /3 = 4S0, y = 0'. 

FIGURE 3.--Continued. 



FIGURE 3.--Continued. 



(b3) a = 1, /3 = 4Se, y = 90". 

FIGURE 3.--Continued. 



(b4) a = 1, j3 = 45', y = 135'. 

FIGURE 3.4ontinued. 
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@S) a = 1, B 4S0, y = 180s. 

FIGURE 3.--Continued. 



FIGURE 3.--Continued. 



(b7) a = 1, fi = 4S0, y = 270'. 

FIGURE 3.--Continued. 



FIGURE 3.4ontinued. 



FIGURE 3.--Continued. 



(c2) a = 1. @ = 90°, y = 45'. 

FIGURE 3.4ontinued. 



FIGURE 3.--Continued. 



( ~ 4 )  a - 1, @ = 90'. y = 135'. 

FIGURE 3.4ontinued. 



(c5) a " 1, p = 90°( y = lmO. 

FIGURE 3.--Continued. 



FIGURE 3.Ã‘Continued 



( ~ 7 )  a = 1.8 = 90e, y = 270'. 

FIGURE 3.4ontinued. 



FIGURE 3.Ã‘Continued 



(dl) a = 1, /3 = 139,  y = 0.. 



(d2) a! - 1, f l  = 135'. y = 45'. 

FIGURE 3.4ontinued. 



FIGURE 3.--Continued. 



(64) a - 1, 8 = 135', y = 135.. 

FIGURE 3.4ontinued. 



(d5) a = 1, /3 = 135', y = 180'. 

FIGURE 3.--Continued. 



(d6) a - 1, /3 = 13S0, y = 225'. 

FIGURE 3.--Continued. 



FIGURE 3.--Continued. 



FIGURE 3.--Continued. 



(el) a = 1, B = 180°, y = 0.. 

FIGURE 3.--Continued. 



(e2) a = 1 , B  = 180". = 450. 

FIGURE 3.--Continued. 



FIGURE 3.--Continued. 



FIGURE 3.--Continued. 
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(eS) a = l , 8  = 180e, y = 180'. 

FIGURE 3.4ontinued. 



FIGURE 3.--Continued. 



(e7) a = 1, /J = 180°, y = 270'. 

FIGURE 3.--Continued. 



(e8) a = 1, B = 180'. y = 315'. 

FIGURE 3.--Continued. 
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(fl) a = 1, B = 225', y - 0'. 

FIGURE 3.--Continued. 



(f2) a = 1, f i  = 225", y = 45'. 

FIGURE 3.4ontinued. 



FIGURE 3.40ntinued. 



(f4) a = 1, /3 = 225.. y = 135.. 

FIGURE 3.--Continued. 



(f5) a - 1, P = 225". y = 180". 

FIGURE 3.4ontinued. 



FIGURE 3.4ntinued. 



(f7) a = 1, B = 225', y = 270'. 

FIGURE 3.4ontinued. 



FIGURE 3.--Continued. 
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(el) a = 1, j3 = 270e, = 6-. 

FIGURE 3.4ontinued. 



(g2) a = 1, f l  = 270°, y = 45'. 

FIGURE 3.4ontinued. 



(83) a = 1, fi = 270e, y - 90". 

FIGURE 3.--Continued. 



(g4) a - 1, f3 = 270'. y = 135'. 

FIGURE 3.4onHnued. 



FIGURE 3.--Continued. 



FIGURE 3.--Continued. 



(17) a = 1, B = 279.. y = 270'. 

FIGURE 3.--Continued. 



(g8) a = 1, B = 270', y = 315'. 

FIGURE 3.4ontinued. 
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(hl) a = 1, /3 = 315'. y = 0'. 

FIGURE 3.4ontinued. 



(h2) a = 1, /3 = 315', y = 45.. 

FIGURE 3.4onHnued. 



(h3) a = 1, /3 = 315', y - 90'. 

FIGURE 3.--Continued. 



FIGURE 3.--Continued. 



6 5 )  a = 1, B - 31S0, y = 180'. 

FIGURE 3.--Continued. 



FIGURE 3.--Continued. 



FIGURE 3.--Continued. 



(ha) a = 1, /.3 - 315'. y = 315'. 

FIGURE 3.4ontinued. 



(11) a = 0.5, /3 = O*, y = 225'. 

FIGURE 3.4ontinued. 



(i2) a = 0.5, B = 0'. y = 270'. 

FIGURE 3.--Continued. 



FIGURE 3.--Continued. 



FIGURE 3.--Continued. 



U2) a = 0.5, J3 = 45', y = 270.. 

FIGURE 3.4ontinued. 



(33) a = 0.5, B = 45', y - 315'. 

FIGURE 3.40ntinued. 
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(kl) a - 0.5, = 139, y = 45'. 

FIGURE 3.--Continued. 



FIGURE 3.4ontinued. 



FIGURE 3.--Continued. 



(11) a - 0.5, ft - 180Â° y = 45'. 

FIGURE 3.Ã‘Continued 



FIGURE 3.--Continued. 



(13) a - 0.5, B = 180". y = 135'. 

FIGURE 3.4ontinued. 



(ml) a -- 0.5, @ - 225'. y - 45'. 

FIGURE 3.--Continued. 



(&) a - 0.5, - 225*, y = 90'. 

FIGURE 3 .4nt inwd.  



FIGURE 3.--Continued. 



(nl) a = 0.5, p = 315'. y = 225'. 

FIGURE 3.4ontinued. 



FIGURE 3.--Continued. 



(n3) a = 0.5, <3 - 315', y =Â 315*. 

FIGURE 3.Ã‘Concluded 



(a) a = 1,p = 180*, y = 180.. 

FIGURE 4.4omparison of approximate and exact bounds. 



(b) a = 1, = OD, y = 270'. 

FIGURE 4.--Continued. 



(c) a = 0.5, /3 - Oo, y = 270'. 

FIGURE 4.--Continued. 



FIGURE 4.--Continued. 

(d) a - 0, - 0, y - 90.. 



(e) a -- 0, /3 - 0, y = 45'. 

FIGURE 4.--Continued. 



--.+------------- 

(0 a = 0, /3 = 0, y = 0'. 

FIGURE 4.4ontinued. 



(g) a ' 0, /3 = 0, y - 0.. 
FIGURE 4.4ontinued. 



(!I) u a 0, p = 0, y = 45'. 

FIGURE 4.--Continued. 



FIGURE 4.--Continued. 



FIGURE 4.4oncluded. 



FIGURE 5.-Typical inner bounding curve showing excluded region (a - 0.5, = 0, y = 270'). 



FIGURE 6.--Family of d l e r  ellipses (a = 0.5, B -- 0, y = 270.1. 



FIGURE 7.-An exunple for which there is no inner excluded region (a = 0, B - 0, y - 45'). 



(a) a - 0, j3 - -0.1, y = 90.. 

FIGURE 8.-Trajectories for which J, > J2. 



FIGURE 8.--Continued. 



(c) a = 0, B = -0.3, y = 90'. 

FIGURE 8.4ontinued. 



(d) a = 0, /3 = -0.4, y = 90.. 

FIGURE 8.4ontinued. 



(e) a = 0, /3 = -0.5, y = 90'. 

FIGURE 8.--Continued. 



(0 a = 0, f l  - -0.6, y -- 90-. 

FIGURE 8.--Continued. 



FIGURE 8.40ncluded. 
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